
I AD-AI05 515 CALIFORNIA UNIV BERKELEY ELECTRONICS RESEARCH LAB F/B /
IEMBEDO ING EXPERT KNOWLEDGE AND HYPOTHETICAL DATA BASES INTO A D-ETCIU)
IAPR RB M STONE BRA KE R, K KELLER NoBS 3q-76-C-0022

UNCLASSIFIED UCB/ERL-M80/15 NL

* E~~hEEhhE

j'EMBEDDING JXPERT KNOWLEDGE AND HYPOTHETICAL DATABASES
INTO A DATA BASE SYSTEM&

by

... /.tonebraker Ad K./eCer?Y
_- /.

=c -=

Z- 14 pri 1980

--..

I "___ Me~orandmiu No. /UCB/ERL-HM8e/15
I_ __-I -.....

ELECTRONICS RESEARCH LABORATORY
College of Engineering
University of California, Berkeley, CA 9472 0

EMBEDDING EXPERT KNOWLEDGE AND HYPOTHETICAL DATA BASES

INTO A DATA BASE SYSTEM

by

M. Stonebraker and K. Keller

Memorandum No. UCB/ERL M80/15

14 April 1980

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Abstract

-This paper is concerned with adding knowledge to a data base management sys-
" tern and suggests two appropriate mechanisms, namely hypothetical data bases

(HDB's) and experts. Herein we indicate the need for HDB's and define the
extensions that are needed to a data base system to support HDB's.

in addition, we suggest that the notion of "experLs" is an appropriate way to add
semantic knowledge to a data base system. Unlike most other proposals which
extend an underlying data model to capture more meaning, our proposal does
not require extensions to the schema. Moreover, the DBMS does not even have
to know how an expert functions. In this paper we define an expert and indicate
how it would be added to one existing data base system.

LI

//

Ii

-I-IF

'*1_

- = i . . . I I I I I

1. Introduction

There has been considerable interest recently in adding semantics to a DBMS so
that it becomes "smarter". The general approach of all investigators with whose
work we are familiar is to extend some existing data model with more semantic
constructs. In this way one enriches the class of possible schemas by providing
mechanisms which are "global" i.e. can apply to any application domain. Pro-
posed constructs include the notions of entities, properties and relationships
(CHEN76], roles [HAMM78], aggregation and generalization [SMIT77a. SMIr77b),

.4 convoys [HAMM78], and temporal ordering [CODD79]. We view the recent work of
Codd rCODD791 as an excellent example of the "schema extension" approach.

However, there appear to semantic constructs which are not handled well by the
above sorts of mechanisms. We now discuss three of them.

1) containment

Often data base objects are inside other data base objects. For example. Berke-
ley is contained in California, people are often inside rooms, parts are inside
warehouses or trucks, etc. It might be argued that both aggregation and con-
voys deal with this situation. For example, the cities in California as an aggre-
gate have the property of containment within the state. Moreover, they form a
convoy, called the California cities convoy.

We view containment as a different notion because it need not, apply at all times.
For example persons are sometimes in rooms, sometimes in airplanes, and
sometimes at bus stops and not contained in any data base object. Hence, con-
tainment is a dynamic construct and many different properties can apply
depending on what the containment vessel is. Also, the convoy notion seems to
model groups. For example, there can be two museum tours, i.e. two convoys,
that are distinguishable objects. However, they can both be contained in the
same room.

2) dist.ance

Many data base objects have a physical location and consequently it makes
sense to have a notion of the distance between them.

3) time

Although [CODD79] suggests the notion of a temporal ordering that may be
required between data base objects, there is much more which can be exploited
about this concept. For example many data base objects (events) have a start-
ing time, a finishing time, a time duration, the property that they must be car-
ried out between B and 5, the property that they must be done tomorrow, etc.

These three examples are notions which are handled poorly (or not at all) by the
semantic extensions indicated above. Rather than extend one data model with
these constructs, we propose instead the construct of "experts" which allow
suc'h notions Lo be easily added to a data base system. One key feature of
eperl.s is l.hal, a data base system does not, have to understand how an expert
works or (cvr what. sort of scrnmirLic: knowledge is ,mibedded in an expert.

.2-

In Section 3 we define an expert and show how one is embedded into an existing
data base system. Then, in Section 4 we suggest that minor modifications are
required to properly capture the notion of a time expert.

One of the application areas where expert-augmented data base systems are
clearly desirable are those suited to artificial intelligence oriented front-end
programs. A good example of such an area is the "Navy ships" application
around which the LADDER [HEND?8] system is constructed. In such application
areas we also see the need for what we term "hypothetical data bases" (HDB's).

A HDB is cbtained from a real data base (RDB) by making some sort of alternate
assumption about the current state of the data. The purpose is to explore alter-
native scenarios, test new application programs, run simulations, produce test
data, etc. We give example situations to illustrate HDB's in the context of the
Navy ships data base.

Planning Applications

The goal is to hypothetically move the fifth fleet to the Sea of Japan so that an
analyst can explore logistic problems associated with resupplying the fleet.
Here, one requires a FDB to be constructed from the RDB differing only in the
position of the fifth fleet. The HDB is to be maintained until the analyst has com-
pleted his work. This scenario also applies to the creation of "what if" test data
for simulation programs.

Debugging

A programmer has a new application program which he wants to test on a "live"
data base. Rather than risk "trashing" the real data base, he can use a
hypothetical data base for his purposes. In this case the HDB may be identical
to the RDI}, or the programmer may want to explore alternative test cases. This
example is suggested in [SEVR76].

The above examples indicate contexts in which a user would want to construct
and maintain a 1-DB. In Section 2 of this paper we suggest the extensions which
are needed in a data base system to support HDB's.

The data base system which we choose to extend with the notions of HDB's and
experts is the INGRES [STON76] system. However, the results are easily applica-
ble to any data base system.

2. Data Base Support for HDB's

The current INGRES data base system supports the notion of real data bases
which may be created and destroyed, each of which contains an arbitrary collec-
tion of real relations. Although it is possible to support the notion of hypotheti-
cal relations in a real data base, we feel it is more appropriate to support com-
plete hypothetical data bases. This will free the user from iteratively having to
specify the hypothetical relations of interest.

Hence, the INGRES command language must be extended to allow the following
comm and.

-3-

CREATEHDB HDB..name FROM realdata-base-name

This command will create a HDB which initially will be identical to the real data
base. A user can then modify relations in his [1DB to any desired state using
QUEL [HELD75] commands. We now specify the effect which QUEL commands
have on such a HDB.

2.1 Processing Commands Against HDB's

On the first update to any relation in an HDB a differential file will be created for
that relation. This differential file (DF) looks very similar to those of [SEVR76]
and contains tuples with the same format as tuples in the original relation
except for the addition. of a new field which is a tuple identifier (TID) for a tuple
in the real relation. Basically, DF indicates how the hypothetical relation differs
from the real relation.

An APPEND command in QUEL will ultimately add a collection of zero or more
tuples to a relation. An APPEND to a relation in a hypothetical data base will
have the effect. of adding tuples to the DF which have the property that their TID
field ts null. Table 1 shows the effect of adding Baker to the hypothetical
EMPLOYEE relation.

A REPLACE command alters field values in zero or more tuples in a relation. A
REPLACE to a relation in a hypothetical data base causes an insert to the DF for
that relation of a new tuple for each updated tuple with the property that a com-
bination of old and new field values are present and the TID field has the tuple
identifier for the updated tuple. Table 1 also shows Brown receiving a hypotheti-
cal raise.

A DELETE commind deletes zero or more tuples in a relation. A DELETE to a
relation in a hypothetical data base causes an insert to the DF for each tuple
deleted. The inserted tuple has the TID of the deleted tuple and null values for
all data fields. Table 1 shows the effect of deleting Jones from the hypothetical
EMPLOYEE relation.

EMPLOYEE

NAME SALARY DEPT
Brown 20 shoe
Smith 15 -toy,

-Jones 25 shoe-

DF

NAME SAJLARY DEPT TID
Baker 30 shoe

Brown 25 shoe TlD(Brown)-
- - TID(Jones)

A F ypothetical Relation
Table I

-4-

All updates are, in fact, implemented by doing a RETRIEVE first to isolate the
changes to be made followed by lower level modifications. The above paragraphs
have indicated the modifications that are appropriate to relations in HDB's. In
all cases the real relation is not modified. We now turn to the effect which a
RETRIEVE must have in a HDB.

In [SEVR75] an algorithm is presented that supports RETRIEVES to a read-only
main file augmented by a read-write DF, Basically, the suggestion requires that
the request be for exactly one record which is specified by a unique key. Hence,
one looks first in the DF for the record. Only if the request fails does one have to
pay a second access to the main file. Moreover, a hashed bit map (called a
Bloom filter) in main memory is proposed that can be used to guarantee that
the requested record is not in the DF. In this case the first access can be
avoided.

There are two problems with this approach:

a) QUEL allows a collection of records to be retrieved via one RETRIEVE com-
mand

b) There is no way to tell the INGRES system that a field must be unique. In
other words, a request for Stonebraker's record may result in two records being
returned, and there is no way to alert the system that this event is impossible.

It is evident the tactics proposed in [SEVR76] only work for unique key
retrievals. Consequently, in other environments a RETRIEVE must always be run
against both the real relation, R, and the DF. Let TID(DF) be the TID's of the
qualifying tuples in DF, TID(R) be the TID's of qualifying tuples in the real rela-
tion, and TID(total) be the collection of all TID's in DF.

The TID's of actually qualifying tuples for a RETRIEVE, Q, are:

TID(Q) = TID(DF) union [TID(R)-TID(total)]

These tuples must be retrieved from both the real relation and from DF.
Appropriate action can be then taken for this collection.

In summary, one can process a RETRIEVE by:

a) run the RETRIEVE against the DF to find TID(DF)

b) run the RETRIEVE against the real relation to find TID(R)

c) for each tuple returned from b) use a Bloom filter as in [SEVR76] to guaran-
tee that it is not in TID(total). Any tuple with this property can be added to the
result of a)

d) for those tuples which are not guaranteed to be absent from TID(total) in step
c), perform an auxiliary RETRIEVE to find the collection actually absent from
TID(total) and add those to the result of a).

Several comments are appropriate about the performance of this algorithm.

-5-

1) In general it will be at least twice as slow as a RETRIEVE against a real rela-
tion. This is because the query must be done against two relations. Even though
one (DF) may be small this fact will not always speed processing.

2) It will pay to have the DF keyed on the same field(s) as the main file. Obvi-
ously, access patterns will be identical for both relations. Moreover, it will
clearly pay to have a secondary index on the TID field in DF, since this will speed
tile lookup in step d) above.

3) In multivariable queries INGRES currently can choose the relation for which
to tuple substitute [WONG76]. Also, in the current INGRES query processing tac-
tics, any one variable clauses in a query will result in a temporary relation that
has no associated DF. Hence, the above processing need not be done when
accessing such a temporary. Consequently, when processing a two variable
query against relations, one of which has no DF, INGRES should choose, if possi-
ble, to do tuple substitution on the other relation. In this case INGRES can
iterate over all tuples in DF and then scan all tuples in the real relation. All it
need do is inspect the secondary index for DF for each tuple in the real relation
that it uses, discarding the ones in the secondary index. This amounts to a
merge of the secondary index and the real relation and is very fast.

2.2 Updating Rules for HDB's

We now turn to updating rules for HDB's and present examples designed to indi-
cate that sometimes one wants the hypothetical environment to be updated
when updates occur in the real environment. This should be contrasted with the
notion of views [STON75, CHAM75] where one is interested in reflecting updates
from unreal objects, namely views, into updates to real relations.

Suppose a user has constructed a HDB with the Enterpr.se in the Sea of Japan.
However, in the real data 'ase the Enterprise is scuttled in San Diego harbor.
Should the Enterprise be deleted from the HDB? Alternately, the real Enterprise
is in San Diego harbor and 100 new seamen report for duty. Should these inser-
tions be reflected in the HDB? Lastly, suppose a HDB is constructed in which the
Enterprise is twice as fuel efficient as currently. Here, the HDB does not alter
the current state of the data base, only the way in which updates to the fuel sup-
ply are handled. Clearly, the fuel reserve in the HDB and the real data base
quickly diverge for the Enterprise. Consequently, how should one reflect the
real Enterprise being refueled?

These examples all indicate that real updates should optionally be reflected into
the hypothetical environment. On a relation by relation basis, we plan to allow
updates to be reflected or not reflected. Hence, the update rules for updating

real data bases must be extended as follows:

For a real update to be NOT REFLECTED and the operation is a:

DELETE

In this case one must perform the delete to the real relation and do an insert
into the i)l" for eiach tuple c(cietLd. If the appropriate tuple already exists int DF,
no l)F' update is nee-ded.

-6- a'

REPLACE

In this case one must perform the update to the real relation and do an insert
into the DF for each tuple modified. This insert must put the old values into DF.
Also, if the tuple already exists in DF, it must be updated with old values

APPEND

In this case one must perform the append to the real relation and do an insert of
a null valued tuple with the appropriate TID into DF for each tuple appended.

For a real update to be REFLECTED and the operation is a:

DELETE

Perform the deletion operation to the real relation and then delete any tuple in
DF that corresponds to a deleted tuple.

REPLACE

One must perform the update to the real relation and then inspect DF. Any
tuple in DF that corresponds to an updated tuple in the real relation will have
appropriate fields set to the modified values. If one becomes equal to the tuple
in the main file, it will be deleted.

APPEND

One must perform the indicated append to the real relation.

In summary, to support HDB's we require utilities to create and destroy HDB's
and a syntax such as

UPDATES TO hypotheticalrelatiorname ARE ivisible, invisiblel

to indicate whether to reflect updates. In addition, we need to alter the INGRES
4 search engine to perform the algorithms indicated in the previous two subsec-

tions.

3. The Notion of Experts

We introduce the notion of experts by indicating some of the functions which a.1 geography expert should be able to do. The user in a previous example wished
the Enterprise in the Sea of Japan. It is entirely possible that he does not care

exactly where in the Sea of Japan the ship is located. For example, he might
only be concerned with refueling it in this remote location. As such, he might
then ask how long it would take for a tanker in San Diego to reach the Enter-
prise. Clearly, the answer only very minorly depends on the exact location of

.91 the Enterprise. Hence, the user is interested in a context where an exact. loca-
tion is irrelevant.

It should be noted that the position of ,he Enterprise is not null-valued because
the Sea or Japan is at least a coarse specification. Moreover. it is not fuzzy in
the sense of Zadeh because a user couid, in fact, specify an exact position; he

-7-

simply chooses not to. This is different than a fuzzy concept whose value can
never be known with certainty. Rather the data is imprecise because it
represents a level of detail inappropriate to the application at hand.

Moreover, when presented with a query inquiring if the Enterprise is in Tokyo
Harbor, a DBMS augmented by a geographic expert can only answer "I don't
know". It is possible that the answer is "yes" because Tokyo harbor is indeed in
the Sea of Japan; however, the Enterprise may also be elsewhere. In general, the

answer to any query directed to an expert augmented system is an answer
qualified by "y.s" and a second answer qualified by "maybe".

In addition, it must be possible to move the Enterprise a certain distance from
its current position in the Sea of Japan. Consequently, a geographic expert
must be able to handle arithmetic.

We now treat each of the following topics in turn:

1) creating data bases involving experts

2) the functions provided by an expert and their integration into INGRES

3) communicating knowledge to an expert

3.1 Creating Expert Oriented Data Bases

Each field of any relation in INGRES will be allowed to be supported by an expert.
The syntax of the CREATE command will be extended to allow the following:

CREATE reLjamejl J(fieldclname = iformat, expert.jname)i

This syntax is identical to the one currently supported except for the possibility
that the format clause is replaced by an expert-name. The effect of this com-
mand is to create),he indicated relation and indicate in the system catalogs that
the appropriate field name is associated with the indicated expert. We will use
the following relation to illustrate the use of experts:

CREATE SHIP_POSItION(name=C20, position = geography-.expert)

Consequently, INGRES will support any number of experts, each associated with
certain fields in various relations. We turn now to the definition of an expert.

3.2 The Definition of Experts

An expert is a procedure (in the language "C" [RITC75]) which has been duly
registered with the data base system and can process the following four calls.

1) Whenever the parser recognizes a term of the form

expert_.field operator value

it calls the expert associated with that field to provide an internal representa-
tion for that value. For example, a user could place the Enterprise in the Sea of
Japan with the following replace statement:

.-8

RANGE OF S IS SHIP-POSITION
REPLACE S(position = "Sea of Japan")

WHERE S.name = "Enterprise"

The first call allows the expert to provide a code for the geographic entity "Sea
of Japan" which is stored by the data base system in the position field. Of
course, the expert must return an internal value which is the appropriate length
defined during the registration process.

2) The expert must accept a qualification of the form:

value.J comparison-operator value-2

and return a value from the set

(true. maybe, false)

For example, to find the ships in Tokyo Harbor one would query the data base as
follows:

RETRIEVE (S.name) WHERE S.position = "TokyoH arbor"

A type 1 call would convert "Tokyo_-arbor" to internal form (i.e. to value.2).
Then, INCRES would retrieve the record for the Enterprise (among other
records). The geographic expert would resolve whether the code for the "Sea of
Japan" matched the code for "Tokyo Harbor".

Notice that in general ALL position codes must be evaluated by the expert to
answer this query because INGRES has no idea what positions actually match the
code For "Tokyo Harbor". Later in this section we discuss mechanisms to over-
come this source of overhead.

3.) The expert must. be able to do computations of the form:

cxpert-field arithmeticoperator constant

For example, the Enterprise might be in the Sea of Japan and its position might
be updated to be 10 miles north of wherever it. is now. This would require an
update of the form:

REPLACE S(position = S.position + iON)
WHERE S.name = "Enterprise"

The ION would be converted to internal form by a type 1 call. Then the expert
would be required to return a code for the arithmetic sum of the code for ION
and the one for the Sea of Japan. This code would be stored as the position of
the Enterprise.

4) 8efore any expert-orientejfield is returned to the user or application pro-
grain, it. must be passed to tl:expert for a possible conversion to external for-
rmat. For example, if the user "oishes Lu know tfie position of the Enterprise, he
would query as follows:

t-9-

RETRIEVE (S.position) WHERE S.name = "Enterprise"

Obviously, the code for the "Sea of Japan" should never be returned to someone
outside the data base system; rather the external representation is returned by
calling the expert.

Moreover, note that the expert can return more than one value if he wishes. For
example, the Enterprise is likely to be in the Sea of Japan as a result of the 1ON
update above. However, it is possible that it is in open ocean to the north.
Hence, the expert can return both possibilities in response to a type 4 call.

Lastly, the expert can return "I don't know" as a possible conversion. This could
result from the following sequence of operations. The user wishes to know the
distance of the enterprise from Tokyo Harbor and inquires as follows:

RETRIEVE (desired_.distance = S.position - "Tokyo_-.arbor")
WHERE S.name = "Enterprise"

First "Tokyo Harbor" would be converted to internal form and then a type 3 call
would be required to compute a code for:

eode.ofnterpriseposition - code-ofTokyoHarbor

Clearly, the answer is somewhere between 0 (if the Enterprise is in the harbor)
i-d the maximum distance between Tokyo Harbor and any point in the Sea of
Japan. Given this uncertainty, the expert can only compute a code representing
'I don't know". Finally, a type 4 call converts this "I don't know" code to an
external representation which is returned to the user.

The last issue associated with the above notion of experts is what to do if a
qualification evaluates to "maybe" as a result of a type 2 call. For true and false
there are obvious courses of action; for maybe the course of action must be the
following.

Any tuple for which "maybe" was returned by the expert must be kept for
further processing in the normal course of INGRES algorithms as if the value
were "true". However, it must be flagged as a "maybe". Ultimately a relation is
returned to the user or calling program; some tuples in which may have the
"maybe" flag set.

Fsr example, to find the ships in the Sea of Japan one would ask

RETRIEVE (S.name) WHERE S.position = "Sea of Japan"

The answer to this query is a collection of ships with certainty and a collection of
ships with maybe.

We now turn to avoiding exhaustive searches when type 2 calls are required.
Obviously, an expert must be registered with the data base system, since the
DB3MS must call it at run time (and link in the expert's code) and know how wide
thc code values are.

The registration process includes a specification for the answers to the following

questions.

1) Does code_1 < code.2 imply that value-1 < value_2

i.e. does the coding process preserve order.

2) Does code-1 != code-2 imply that value1 != value2

These two pieces of information will often allow INGRES to avoid an exhaustive
search when a qualification involves an expert field. In addition, the following
also appears useful.

3) Does codeJ .AND. code._2 = FALSE imply that value...1 != value.2

Here, one could code values in such a way that Sea of Japan was 1000 and Tokyo
Harbcr was lXXX. This would allow the data base system to search for matches
efficienLly when property 2) above is not true.

Clearly, it must be possible for a user to communicate information to the
expert. We now turn to how this might be accomplished.

3.3 Communication With an Expert

Knowledge will be communicated to an expert as a byproduct of certain updates.
For example, the coding expert suggested for MacAims [GOLD70] was a mechan-
ism obeying our expert paradigm. Their expert assigned an internal representa-
tion for any external string. This internal representation was supported by a
binary tree data structure and had the property that if stringi was less than
st.ring_2? then codc. was less than code_2. This is exactly property I which
would be communicated in the registration process noted above.

Such an expert, when presented with a new external value will simply assign a
n2w code and insert the correspondence into whatever data structure it is main-
taining. However, for some experts this mechanism is not sufficient.

For example, the geographic expert is totally ignorant of new concepts.

Presented with the query "Find the names of the ships in the Bering Sea" e.g.:

RETRIEVE (S.name) WHERE S.position = "Bering Sea"

the expert can clearly assign a code to the "Bering Sea"; however, he has no way
of' knowing what OTHER codes match the code for "Bering Sea". Hence, he must
be provided with this information.

We propose that experts receive information through the data base system from
end users or programs. In this way, the information must be provided in a very
stylized way that is under the control of the data base system. Consequently,
humans are discouraged from "hand crafting" knowledge directly into the inter-
nal form accepted by en expert. As such it may be possible to write a "meta
expert" which can be adapted to multiple application areas by inserting
different knowledge.

The data base system is prepared to accept the following commands:

& ~-II -.

1) COMMU NICATE WITH expert-name "name.-1" operator "name.2"

2) COMML NICATE WITH expert.-name "name.J" operator "string"

3) COMMUNICATE WITH expert-name "name. " operator "name.2'" operator
"string"

4) COMMUNICATE WITH expert.name "string"

The legal operators for syntax 1) are expected to be:

a) comparison operators (=, !=, <, <=,>, >=)

For example COMMUNICATE WITH geography.expert "Taiwan" "Formosa"

b) part_.of

For example, COMMUNICATE WITH geography-expert "midwest" part.pf "United
States"

c) IN

For example, COMMUNICATE WITH fleet-expert "Enterprise" IN "fifth-Beet"

Syntax 2) is intended to allow definition of terms to an expert. For example.

COMMUNICATE WITH geographyexpert "Mississippi River" =
"definitior_pLfMississippiRiverin..-experterms"

Moreover, syntax 3) is intended to atlow definition of relative terms, e.g.

COMMUNICATE WITH tinie-expert "yesterday" = "today" - "24 hours"

Assuming "today" and "24 hours" have already been defined, this allows the
definit.ion of yesterday. We expect to implement syntax 3) allowing any arith-
rrLetic operator.

The last syntax allows passing an arbitrary string to an expert. In the next sec-
tion we indicate some uses for this general construct.

4. The Time Expert

It is clear that a time expert can obey the paradigm of the preceding section.
One need only specify that some field in a relation be the time field controlled by
the time expert. Presumably, this field stores the time from the system clock
or some more complex representation. In this way a row in such a relation is
essentially timestamped with a value. We now give an example to show why such
an expert is not sufficient.

Suppose we have a relation of the form:

CREATE SHIP-POSITION (name C20, position = geography..xpert, time =

-12-

time.xpert)

SHIP-POSITION contains information on the position of ships and the time at
which that sighting took place.. Suppose a program is periodically inspecting a
sensor and issuing the update:

RANGE OF S IS SITP_.POSITION
REPLACE S(position = "some.alue", time = "current-time")

WHERE S.name = "Enterprise"

In this case the SHIP-POSITION relation will contain only the most recent sight-
ing for any given ship. Suppose a user now issues the query:

RETRIEVE (S.position) WHERE S.name = "Enterprise" and
S.time = "yesterday"

Obviously, the data base will respond that no tuples match the qualification and
that the answer to the query is "I don't know" (or more accurately I forgot!)

In order to avoid failing to answer such queries, we propose an extension to our
paradigm appropriate for the time expert.

Whenever, a REPLACE operation is indicated for a relation containing a field
managed by the ime expert, it is automatically turned by INGRES into an
APPEND. For example, the command
REPLACE S(position = "some_.salue', time = "current-time")

WHERE S.name = "Enterprise"

would be altered to

APPEND TO SHiPj)OS]'TrON (position = "some.yaLue",
time = "currenL._time", otherjfields = S.other-ields)

WIIERL S.narne = 'Enterprise"

An APPEND, of course remains and APPEND. However, a DELETE causes a prob-
lem. For example, to sink the Enterprise one would:

DELETE S WHERE S.name = "Enterprise"

If this command iF processed as stated, then the whole sightings history disap-
-. pears and one would not be able to find out where the Enterprise was yesterday.

The only rational course of action appears to be to disallow DELETES. Conse-
quently, to sink the Enterprise one would have to do a REPLACE on a status field
which had allowed values foperational, sunk?.

Note that. reltions mnjinaged by the tit-(r expert have the property that they
ittcrcasc in size with each update. Obviously. this can't last. long. Hence, we pro-
po.se that. users be abh" L) communcae how forgetful the expert should be
using the COMMUNICATE command as in the following examples.

COMMUNICATE WITH tinieexpert "size of relation..name < N-tuples"

-13-

COMMUNICATE WITH time-expert "remember last N updates"

COMMUNICATE WITH time-expert "remember last N time units"

These are all cases where more complex information must be communicated
with an expert than allowed in syntax 1)-3) above.

We now briefly indicate the relationship between a time expert and an audit
trail. Most audit trails contain old values and new values for each update to the
data base [GRAY78) and are typically spooled onto an alternate volume and then
to tape.

It is clear that the time expert maintains a complete audit trail, albeit in a
slightly different form. If the time expert spools tuples to tape instead of throw-
iLig Ihem away when they become too old, then it should be able to provide an
audit trail as a side effect. This idea has been suggested previously, and we plan
to explore the performance consequences of unifying the two concepts.

5. Conclusions

We have proposed two mechanisms to allow a DBMS to become "smarter".
namely HDB's and experts. If possible we plan to implement both notions. More-
over, we expect to write a geography expert according to our proposed para-
digm to test its robustness.

Acknowledgement

This research was supported by the Naval Electronics Systems Command under
Contract N00039-76-c-0022 and by the Army Research Office under Grant
DAG29-76-40245. Ken Keller is a Fannie and John Hertz Foundation Fellow.

References

[CHAM75]
Chamberlin, D. et. al., "Views, Authorization and Locking in a Relational Data
Base management System," Proc. 1975 National Computer Conference,
Anaheim, Ca., June 1975.

[CHEN76]
Chen, P., "The Entity-Relationship Model: Toward a Unified View of Data,"
ACM TODS 1, 1, March 1976.

[CODD79]
Codd, E., "Extending the Relational Model to Capture More Meaning," to
appear in ACM TODS.

[GOLD70]
Goldstein. R. and Strnad, A., "The MacAIMS Data management System,"
Proc. 1970 ACM-SIGFIDET Workshop on Data Description and Access, Hous-
ton, Texas, November 1970.

[GRAI 781
Gray, J., "Notes on Operating Systems," IBM Research, San Jose, Ca., Report
RJ 3120, October 1978.

[HAMM78]
Fammer, M. and McLeod, D., "The Semantic Data Model: A Modelling

-14-

Mechanism for database Application." Proc. 1978 ACM-SIGMOD Conference
on Management of Data, Toronto. Ontario, August 1978.

[HELD75]
Feld, G. et. al., "INGRES: A Relational Data Base System," Proc. 1975
National Computer Conference, Anaheim Ca., June 1975.

[HEND78]
1-endrix, G. G. et. al., "Developing a Natural Language Interface to Complex
Data," TODS, June 1978.

[RITC75]
Ritchie, D. and Thompson, K., "The UNIX Time-sharing System," CACM, June
1975.

[SEVR76]
Severance, D. and Lohman, G., "Differential Files: Their Application to the
Maintainance of Large Databases," TODS. June 1976.

[SMIT77a]
Smith, J. and Smith, D., "Database Abstractions: Aggregation," CACM 20, 6,
June 1977.

[SMIT77b]
Smith. J. and Smith, D., "Database Abstractions: Aggregation and Generali-
zation." ACM TODS 2, 2, September 1977.

[STON75]
Stonebraker, M., "Implementation of Integrity Constraints and Views by

- 4 Query Modification," Proc. 1975 ACM-SIGMOD Conference on Management of
Data, San Jose, Ca., June 1975.

[STON76]
Stonebraker, M. et. al.. "The Design and Implementation of INGRES," TODS 2,
3, September 1976.

[WONG76]
Wong, E. and Youseffi, K., "Decomposition - A Strategy for Query process-
ing," ACM TODS 2, 3, September 1976.

-1-

